tangential acceleration - определение. Что такое tangential acceleration
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое tangential acceleration - определение

RATE AT WHICH THE MAGNITUDE AND/OR DIRECTION OF VELOCITY CHANGES WITH TIME
Accelerate; Centripetal acceleration; Deceleration; Accelerative; Accelerating; Accelerations; Centripetal Acceleration; Accelleration; Uniform acceleration; Constant acceleration; Tangental acceleration; Accelerated motion; Accelerated Motion; Radial acceleration; Tangential acceleration; Second temporal derivative of displacement; Uniform Acceleration; Linear acceleration; Exceleration; Decelerating; Constant acceleration formulae; Instantaneous acceleration; Aceleration; Acceleration (physics)
  • ''s''(''t'')}}.
}}
  • Δ'''v'''/Δ''t''}}
  • '''a'''<sub>c</sub>}} is due to the change in direction of the velocity vector and is normal to the trajectory, pointing toward the center of curvature of the path.
  • '''a'''}}.
  • An oscillating pendulum, with velocity and acceleration marked. It experiences both tangential and centripetal acceleration.
  • Calculation of the speed difference for a uniform acceleration

acceleration         
n.
Hastening, increase of velocity. See preceding verb.
Acceleration         

In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the orientation of the net force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes:

  • the net balance of all external forces acting onto that object — magnitude is directly proportional to this net resulting force;
  • that object's mass, depending on the materials out of which it is made — magnitude is inversely proportional to the object's mass.

The SI unit for acceleration is metre per second squared (m⋅s−2, m s 2 {\displaystyle \mathrm {\tfrac {m}{s^{2}}} } ).

For example, when a vehicle starts from a standstill (zero velocity, in an inertial frame of reference) and travels in a straight line at increasing speeds, it is accelerating in the direction of travel. If the vehicle turns, an acceleration occurs toward the new direction and changes its motion vector. The acceleration of the vehicle in its current direction of motion is called a linear (or tangential during circular motions) acceleration, the reaction to which the passengers on board experience as a force pushing them back into their seats. When changing direction, the effecting acceleration is called radial (or centripetal during circular motions) acceleration, the reaction to which the passengers experience as a centrifugal force. If the speed of the vehicle decreases, this is an acceleration in the opposite direction and mathematically a negative, sometimes called deceleration or retardation, and passengers experience the reaction to deceleration as an inertial force pushing them forward. Such negative accelerations are often achieved by retrorocket burning in spacecraft. Both acceleration and deceleration are treated the same, as they are both changes in velocity. Each of these accelerations (tangential, radial, deceleration) is felt by passengers until their relative (differential) velocity are neutralized in reference to the acceleration due to change in speed.

acceleration         
1.
The acceleration of a process or change is the fact that it is getting faster and faster.
He has also called for an acceleration of political reforms.
N-UNCOUNT: oft N of/in n
2.
Acceleration is the rate at which a car or other vehicle can increase its speed, often seen in terms of the time that it takes to reach a particular speed.
Acceleration to 60 mph takes a mere 5.7 seconds.
N-UNCOUNT
3.
Acceleration is the rate at which the speed of an object increases. (TECHNICAL)
N-UNCOUNT

Википедия

Acceleration

In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the orientation of the net force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes:

  • the net balance of all external forces acting onto that object — magnitude is directly proportional to this net resulting force;
  • that object's mass, depending on the materials out of which it is made — magnitude is inversely proportional to the object's mass.

The SI unit for acceleration is metre per second squared (m⋅s−2, m s 2 {\displaystyle \mathrm {\tfrac {m}{s^{2}}} } ).

For example, when a vehicle starts from a standstill (zero velocity, in an inertial frame of reference) and travels in a straight line at increasing speeds, it is accelerating in the direction of travel. If the vehicle turns, an acceleration occurs toward the new direction and changes its motion vector. The acceleration of the vehicle in its current direction of motion is called a linear (or tangential during circular motions) acceleration, the reaction to which the passengers on board experience as a force pushing them back into their seats. When changing direction, the effecting acceleration is called radial (or centripetal during circular motions) acceleration, the reaction to which the passengers experience as a centrifugal force. If the speed of the vehicle decreases, this is an acceleration in the opposite direction and mathematically a negative, sometimes called deceleration or retardation, and passengers experience the reaction to deceleration as an inertial force pushing them forward. Such negative accelerations are often achieved by retrorocket burning in spacecraft. Both acceleration and deceleration are treated the same, as they are both changes in velocity. Each of these accelerations (tangential, radial, deceleration) is felt by passengers until their relative (differential) velocity are neutralized in reference to the acceleration due to change in speed.